59 research outputs found

    Spontaneous symmetry breaking of a hyperbolic sigma model in three dimensions

    Full text link
    Non-linear sigma models that arise from the supersymmetric approach to disordered electron systems contain a non-compact bosonic sector. We study the model with target space H^2, the two-hyperboloid with isometry group SU(1,1), and prove that in three dimensions moments of the fields are finite in the thermodynamic limit. Thus the non-compact symmetry SU(1,1) is spontaneously broken. The bound on moments is compatible with the presence of extended states.Comment: 21 pages, dedicated to F.J. Dyson on the occasion of his 80th birthda

    Localization of quasiparticles in a disordered vortex

    Full text link
    We study the diffusive motion of low-energy normal quasiparticles along the core of a single vortex in a dirty, type-II, s-wave superconductor. The physics of this system is argued to be described by a one-dimensional supersymmetric nonlinear sigma model, which differs from the sigma models known for disordered metallic wires. For an isolated vortex and quasiparticle energies less than the Thouless energy, we recover the spectral correlations that are predicted by random matrix theory for the universality class C. We then consider the transport problem of transmission of quasiparticles through a vortex connected to particle reservoirs at both ends. The transmittance at zero energy exhibits a weak localization correction reminiscent of quasi-one-dimensional metallic systems with symmetry index beta = 1. Weak localization disappears with increasing energy over a scale set by the Thouless energy. This crossover should be observable in measurements of the longitudinal heat conductivity of an ensemble of vortices under mesoscopic conditions. In the regime of strong localization, the localization length is shown to decrease by a factor of 8 as the quasiparticle energy goes to zero.Comment: 38 pages, LaTeX2e + epsf, 4 eps figures, one reference adde

    Symmetry classes of disordered fermions

    Full text link
    Building upon Dyson's fundamental 1962 article known in random-matrix theory as 'the threefold way', we classify disordered fermion systems with quadratic Hamiltonians by their unitary and antiunitary symmetries. Important examples are afforded by noninteracting quasiparticles in disordered metals and superconductors, and by relativistic fermions in random gauge field backgrounds. The primary data of the classification are a Nambu space of fermionic field operators which carry a representation of some symmetry group. Our approach is to eliminate all of the unitary symmetries from the picture by transferring to an irreducible block of equivariant homomorphisms. After reduction, the block data specifying a linear space of symmetry-compatible Hamiltonians consist of a basic vector space V, a space of endomorphisms in End(V+V*), a bilinear form on V+V* which is either symmetric or alternating, and one or two antiunitary symmetries that may mix V with V*. Every such set of block data is shown to determine an irreducible classical compact symmetric space. Conversely, every irreducible classical compact symmetric space occurs in this way. This proves the correspondence between symmetry classes and symmetric spaces conjectured some time ago.Comment: 52 pages, dedicated to Freeman J. Dyson on the occasion of his 80th birthda

    (1+1)-dimensional Baryons from the SU(N) Color-Flavor Transformation

    Get PDF
    The color-flavor transformation, an identity that connects two integrals, each of which is over one of a dual pair of Lie groups acting in the fermionic Fock space, is extended to the case of the special unitary group. Using this extension, a toy model of lattice QCD is studied: N_f species of spinless fermions interacting with strongly coupled SU(N_c) lattice gauge fields in 1+1 dimensions. The color-flavor transformed theory is expressed in terms of gauge singlets, the meson fields, organized into sectors distinguished by the distribution of baryonic flux. A comprehensive analytical and numerical search is made for saddle-point configurations of the meson fields, with various topological charges, in the vacuum and single-baryon sectors. Two definitions of the static baryon on the square lattice, straight and zigzag, are investigated. The masses of the baryonic states are estimated using the saddle-point approximation for large N_c.Comment: LateX, 53 pages, 13 figure

    Universal spectral statistics of Andreev billiards: semiclassical approach

    Full text link
    The classification of universality classes of random-matrix theory has recently been extended beyond the Wigner-Dyson ensembles. Several of the novel ensembles can be discussed naturally in the context of superconducting-normal hybrid systems. In this paper, we give a semiclassical interpretation of their spectral form factors for both quantum graphs and Andreev billiards.Comment: final improved version (to be published in Physical Review E), 6 pages, revtex

    Multifractality of wavefunctions at the quantum Hall transition revisited

    Get PDF
    We investigate numerically the statistics of wavefunction amplitudes ψ(r)\psi({\bf r}) at the integer quantum Hall transition. It is demonstrated that in the limit of a large system size the distribution function of ψ2|\psi|^2 is log-normal, so that the multifractal spectrum f(α)f(\alpha) is exactly parabolic. Our findings lend strong support to a recent conjecture for a critical theory of the quantum Hall transition.Comment: 4 pages Late

    Conformal Current Algebra in Two Dimensions

    Full text link
    We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two- and three-point functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of PSU(n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.Comment: 33 pages, minor correction

    Dimensionality dependence of the wave function statistics at the Anderson transition

    Get PDF
    The statistics of critical wave functions at the Anderson transition in three and four dimensions are studied numerically. The distribution of the inverse participation ratios (IPR) PqP_q is shown to acquire a scale-invariant form in the limit of large system size. Multifractality spectra governing the scaling of the ensemble-averaged IPRs are determined. Conjectures concerning the IPR statistics and the multifractality at the Anderson transition in a high spatial dimensionality are formulated.Comment: 4 pages, 4 figure

    Localization and fluctuations of local spectral density on tree-like structures with large connectivity: Application to the quasiparticle line shape in quantum dots

    Full text link
    We study fluctuations of the local density of states (LDOS) on a tree-like lattice with large branching number mm. The average form of the local spectral function (at given value of the random potential in the observation point) shows a crossover from the Lorentzian to semicircular form at α1/m\alpha\sim 1/m, where α=(V/W)2\alpha= (V/W)^2, VV is the typical value of the hopping matrix element, and WW is the width of the distribution of random site energies. For α>1/m2\alpha>1/m^2 the LDOS fluctuations (with respect to this average form) are weak. In the opposite case, α<1/m2\alpha<1/m^2, the fluctuations get strong and the average LDOS ceases to be representative, which is related to the existence of the Anderson transition at αc1/(m2log2m)\alpha_c\sim 1/(m^2\log^2m). On the localized side of the transition the spectrum is discrete, and LDOS is given by a set of δ\delta-like peaks. The effective number of components in this regime is given by 1/P1/P, with PP being the inverse participation ratio. It is shown that PP has in the transition point a limiting value PcP_c close to unity, 1Pc1/logm1-P_c\sim 1/\log m, so that the system undergoes a transition directly from the deeply localized to extended phase. On the side of delocalized states, the peaks in LDOS get broadened, with a width exp{constlogm[(ααc)/αc]1/2}\sim\exp\{-{const}\log m[(\alpha-\alpha_c)/\alpha_c]^{-1/2}\} being exponentially small near the transition point. We discuss application of our results to the problem of the quasiparticle line shape in a finite Fermi system, as suggested recently by Altshuler, Gefen, Kamenev, and Levitov.Comment: 12 pages, 1 figure. Misprints in eqs.(21) and (28) corrected, section VII added. Accepted for publication in Phys. Rev.

    Nonhermitian Supersymmetric Partition Functions: the case of one bosonic flavor

    Full text link
    We discuss the supersymmetric formulation of the nonhermitian β=2\beta = 2 random matrix partition function with one bosonic flavor. This partition function is regularized by adding one conjugate boson and fermion each. A supersymmetric nonlinear σ\sigma-model for the resulting Goldstone degrees of freedom is obtained using symmetry arguments only. For a Gaussian probability distribution the same results are derived using superbosonization and the complex orthogonal polynomial method. The symmetry arguments apply to any model with the same symmetries and a mass gap, and demonstrate the universality of the nonlinear σ\sigma-model.Comment: 17 pages, 0 figures. Section II extended. Version to appear in Nucl.Phys.
    corecore